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Abstract

Model selection in clustering requires (i) to specify a clustering principle and (ii)
to decide an appropriate number of clusters depending on the noise level in the
data. We advocate an information theoretic perspective where the uncertainty in
the data set induces an uncertainty in the solution space of clusterings. A clus-
tering model, which can tolerate a higher level of noise in the data than com-
peting models, is considered to be superior provided that the clustering solution
is equally informative. This tradeoff between informativeness and robustness is
used as a model selection criterion. The request that solutions should generalize
from one data set to an equally probable second data set gives rise to a new notion
of structure induced information.

1 Clustering: Science or Art?

Data clustering or data partitioning has emerged as the workhorse of exploratory data analysis. This
unsupervised learning methodology comprises a set of data analysis techniques which group data
into clusters by either optimizing a quality criterion or by directly employing a clustering algorithm.
The zoo of models range from centroid based algorithms like k-means or k-medoids, spectral
graph methods like Normalized Cut, Average Cut or Pairwise Clustering to link-
age inspired grouping principles like Average Linkage or Path-based Clustering.

In this talk I will argue for a shift of viewpoint away from the problem “What is the ‘right’ clus-
tering model?” to the question “How can clustering models algorithmically be validated?”. This
conceptual shift roots in the assumption that ultimately, the data should vote for their prefered model
type and model complexity[3]. Therefore, algorithms which are endowed with the ability to vali-
date clustering concepts can maneuver through the space of clustering models and, dependent on
the training and validation data sets, they can select a model with maximal information content and
optimal robustness. While the design of clustering models based on prior knowledge of the data
source might be considered as Art, the systematic search through the space of clustering models
by cluster validation based on information theoretic principles defines an algorithmic strategy of a
scientific program.

Information theoretic model validation uses empirical risk approximation (ERA) [2] to quantize the
hypothesis class of clusterings. ERA employs an hypothetical communication framework where sets
of approximate clustering solutions for the training and for the test data are used as a communication
code. Approximations of the empirical minimizer with model averaging favors stability of cluster-
ings. Information theoretic model validation is formulated in the context of risk approximation,
although it only requires a clustering method which can output a set of clusterings without necessar-
ily minimizing a risk function. Furthermore, it is well known that stability based model selection [4]
yields highly satisfactory results in applications although the theoretical foundation of this model
selection strategy is still controversely debated [1]. Cluster inference based on approximations is
motivated by the uncertainty in data which induce uncertainty in the solution space. Clusterings are
considered to be similar if they are statistically indistinguishable due to data noise. The request that



solutions should generalize from one data set to an equally probable second data set gives rise to a
new notion of structure induced information.

2 Statistical learning of clustering

Given are a set of objects O = {04, ..., 0, } and measurements X € X to characterize these objects.
X denotes the measurement space. Such measurements might be vectors x; € R‘ﬂ 1<i<nin
a d-dimensional space or relations D = (D;;) € R™"™ which describe the (dis)-similarity between
object o; and o;. More complicated data structures than vectors or relations, e.g., three-way data
or graphs, are used in various applications. In the following, we use the generic notation X for
measurements. Data denote the relation O x X of object-measurement relations.

The hypothesis class for a clustering problem is defined by the set of assignments of data to groups,
ie,C={c: OxX — {1,...,k}}. C(X) is a set of functions which map objects to cluster indices.
For n objects we can distinguish O(k™) such functions. Special clustering models might require
additional parameters 6 which characterize a cluster like the centroids in k-means clustering. The
hypothesis class is then the product space of possible assignments and possible parameter values.

Pattern analysis in data clustering requires to quantify the quality of such hypotheses, e.g., in vector
quantization we use the k-means cost function and we use the nearest centroid assignment rule. For
the subsequent discussion on empirical risk approximation we assume that a cost function R(c, 8; X)
is given which measures how well a particular clustering with assignments ¢(o, X) and cluster pa-
rameters 6 groups the objects. A suitable metric on the space of hypotheses might be chosen based
on such a cost function R.

3 Why information theory for clustering?

To formulate the statistical learning question we have to consider the following problem: Quite
often the measurement space X has a much higher ”dimension” than the solution space. Con-
sider for example the problem of spectral clustering with k& groups based on dissimilarities D: The
measurements are elements of R™("~1)/2 for real valued, symmetric weights with vanishing self-
dissimilarity, but we can only distinguish less than or equal to £™ different clusterings. Any approach
which relies on estimating the probability distribution of the data ultimately will fail since we re-
quire far too many observations than needed to identify one hypothesis or a set of hypotheses, i.e.,
one clustering or a set of clusterings.

Using an information theoretic perspective, we might ask the question how the uncertainty in the
observations limit the resolution in the hypothesis class. How different can two hypotheses be so
that they are still statistically indistinguishable given a cost function R(c, 8; X)? The core question
of statistical learning, "How well does a learning solution generalize?”, is intimately related to the
problem of distinguishing hypotheses.

Shannon’s information theory provides a framework to study such questions of how many bit strings
can be reliably distinguished in the presence of noise and, therefore, can be used as a code for
communication. This study is based on the idea that approximation sets of clustering cost functions
can be used as a reliable code. The capacity of such a coding scheme then answers the question
how sensitive a particular cost function is to noise. “Good” models exhibit high robustness to noise
and at the same time, they are highly informative due to a large hypothesis class. “Poor” models
might be sensitive to noise (overfitting) or might be very restrictive with a small hypothesis class
(underfitting).

To identify the correlates of code vector and code book in classical information theory, we de-
fine the set C, of hypotheses which are y-optimal w.r.t. the minimum cost solution c*+(X) =
argmin. g R(c, 0; X), i.e.,

C,(X) = {c : R(c,0;X) < R(c*+,0;X) +~}. (1)

To test how well a ~-optimal solution generalizes to a new data set, we assume two samples of
a problem to be given, i.e., we have measurements X(l), X2 ~ Pr(X) for training and testing.



These two measurements X (1) define two optimization problems R(c, §; X(*2)). For both mea-

surements we can determine y-optimal approximations CA(YM) = CA,(X(LQ)). To measure stability
of a solution, we require that the intersection between both sets is as large as its intersection with the
complement C, (X(l)). If this condition is met then the noise in the data will not affect the property
to be y-optimal to the optimum. ~y-optimality can be considered as a similarity criterion based on
the cost function R(c, 8; X).

4 Coding by approximation

The informativeness-robustness tradeoff is expressed by the condition that the approximation pre-
cision ~ should be as small as possible and the intersection between the two approximation sets
should be as large as their union. This condition corresponds to Shannon’s random coding argument
that the received bit string should be jointly typical with the codeword which has been selected by
the sender. The error of this communication process vanishes for asymptotically large bit strings
provided we do not exceed the capacity of the communication channel.

In our setting, where we use approximation sets for coding, we have to generate 2" different code
problems with respective approximation sets so that a zero error condition can be used to determine
the optimal model. np defines a coding rate which should be maximized. Furthermore, such a
procedure will allow us to measure the number of bits relative to the hypothesis class which we have
selected for our clustering problem.
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Figure 1: Generation of a set of 2"” code  Figure 2: Communication process: the sender se-

problems for .com.mu.nication by e.g. per-  lects transformation o, and the receiver estimates
muting the object indices. o*.

As depicted in fig. 1, the sender follows the following procedure to define the set of code problems:
(i) the problem generator send the data set X(1) to sender and receiver; (ii) the sender permutes the
object indices of the data in such a way that the new optimal solution c* (0, X) is transformed to oj0
¢t (0,X). In total, there exist 2" (P) with H(p,) = — 3, <, 7P, log p, many transformations
o. This set of transformations is shared with the receiver which establishes a code.

In the communication process (fig. 2), the sender selects the transformation o, and send this
transformation to the problem generator §3® which generates a second data set X(?) ~ Pr(X).
This fest data set is drawn from the same probability distribution as the training data set X(*). The

P& then applies the transformation o5 to the test data and send the transformed data X =0,0X®
to the receiver.

The receiver now faces the question which transformation o;, 1 < j < 2™ has been selected by the
sender. If he is able to estimate the transformation selected by the sender, then he has received np
bits in this communication. To compute the intersection between the approximation set of the test
problem and the approximation set of one of the code problems, solutions of the test problem have to
be mapped to the hypothesis class C(X(1)). This mapping is denoted by ¢ : C(X®)) — ¢(XM)).

For decoding, the receiver intersects the approximation set ¢ o CW(X) with all approximation sets
in the codebook {C, (o 0 X)), 1 < j < 2"P}. Under the condition that a sufficiently large overlap
exists, the receiver declares the transformation o*



o* = argmgx‘CW(UOX(l)) N (ZS(C,Y(X@)))‘ (2)
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as being selected by the sender. o* is the received message which has been transmitted by an
approximate optimization protocol using the problem generator as a channel.
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S Error Analysis of this Code

To analyze the error of this communication protocol, we introduce the following events

& = Cy(o;0XD) 1 (600, (XD)). 3)

The event Vj # s, £ > &£; corresponds to correct communication with o* = 0.
Two types of errors can occur using this communication protocol:

1. The approximation set ¢ o C,(X(?)) does not substantially intersect with the “correct”,
sender selected approximation set C, (o o X(l)), ie.,

£ 1= CXM)\ ¢, (XD) 1 (90,(0, 0 X)) @

2. The approximation set ¢ o C, (X(Q)) substantially intersects with an “incorrect” approxi-
mation set C (o o XM), j +# s, 1i.e., the event &, j # s occurs.

The conditional error of communication
gne

P(error|os) = P \/ E;j > &slos (5)
j=1

will determine the capacity of our communication channel, which we name approximation capacity.
The communication rate np should not exceed the mutual information

Z(Cy(X M), 60 Cy(X?)). (6)

Different clustering models R(., X ) can be ranked according to their approximation capacity where
good model will demonstrate a high approximation capacity. They are robust to the noise in the data
and, therefore, allow us to select a small v with a correspondingly large np.
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